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Abstract. A new solution of the Yang-Baxter equation, that is related to the adjoint
representation of the quantum enveloping algebra Uy, B, is obtained by fusion formulae from a
non-standard solgtion,

1. Infroduction

There are three typical methods [1] for finding the trigonometric solutions of the Yang~
Baxter equation {2]. The main one is based on Jimbo's theorem (3,4]. The necessary
condition for using this method is the existence of the quantum generator eg, corresponding
to the negative lowest root. The second method for finding solutions is the so-called Yang—
Baxterization, namely to embed appropriately the spectral parameter x into a solution éq of
the simple Yang-Baxter equation such that i:q (x) satisfies the Yang—Baxter equation. This
methed is useful for the cases where the spectrum-independent solution E‘q has only two or
three different eigenvalues [5,1]. The third method is the fusion formulae [6,7,1] where an
appropriate project operator is needed.

Unfortunately, firstly, the explicit form of e, satisfying the quanturm algebraic relanons
does not exist for the adjoint representation of any quantum enveloping algebra U, G, except
for U;Ag; however, for the quantum twisted loop algebra, as reminded by the referse,
the egp mafrix may exist. Secondly, the spectrum-independent solution éq for the adjoint
representation usually has many more than three different eigenvalues. For instance, in
the simplest case, the-solution Rq for the adjoint representation of U, B, has six different
eigenvalues. Finally, from the solution Rq {x) related to the minimal representation, obtained
based on Jimbo's theorem, the needed project operator for the fusion formulae does not exist
for this case. This is the reason why no solution of the Yang—Baxter equation related to the
adjoint representation of U, G, except for U, A;, has been found up to now.

On the other hand, by Yang-Baxterization, when féq has three different eigenvalues,
there is an additional solution, a so-called non-standard ore, that happens to provide the
needed project operator for the fusion formulae. In this way we are able to compute
the solution related to the adjoint representations of U, Be, U,Cy and U, D;. In order to
realize this idea, in this paper we compute explicitly the simplest example of those cases:
the trigonometric and rational solutions of the Yang-Baxter equation related to the adjoint
representation of U, By, that is equivalent to U/, C;. The rest of the solutions can be computed
straightforwardly, but more complicatedly.
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This paper is organized as follows. In section 2, we show that the explicit form of the ¢y
matrix for the adjoint representation of U, By, that satisfies the quantum algebraic relations,
does not exist. In order to use the fusion formulae firstly we have to compute the solution
Rq(x) of the Yang-Baxter equation related to the minimal representation in section 3. From
this we obtain the project operator Rq (g~*) that maps the direct product spaces V(; 0 ® Vi1 0y
onto the representation space V,qj = Vipo) of the adjoint representation, where Vi are the
representation spaces of the minimal representation (10). In section 4 we sketch the proof

for the fusion formulae. The explicit form of E;" (x) is computed in section 5 in terms of
the quantum Clebsch—Gordan coefficients for the co-product in the direct product of two
representation spaces of the adjoint representation. The corresponding rational solution of
the Yang-Baxter equation is obtained in section 6 by a standard limit process {11.

2. Non-existence of ey matrix

The Cartan matrix for the algebra B» is

(2 -1 a1 3
“‘(—2 2) 4 ‘(1 1)' @)
From this we have the relation between the simple roots r; and the fundamental dominant
weight A;:

=2A1 —2An ro=—A +2A Al=T1+1 A=r /241 (2)

An irreducible representation of U, B; is denoted by its highest weight M = (M1 M2)
and the states by m = (mymsz):

M = M + Mohs e = M1 + Mars . €))

The minimal representation is denoted by (1 0), and the adjoint representation by (02). The
Casimir C»(M) is calculated by the following formuia:

Co(M) = ME+ MMy + M2/2+3M; + 2M; . 4)
The quantum algebraic relations for U, By are as follows:

q=q:=gq kiki =kiki ke =g ek kifi=q " fik

kZ_k—Z
le, fi]1 = 5:'1—-——12 — i j=12
qy = 4q

1—ay (3)
Z(_l)n ( a.[j) 2 e:-—mj“‘neje}, =0 i ;é J'
9

I—ay

Z( 1)"( “'1) RO =0 Q).
9
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From Jimbo’s theorem [3], we hope to find the generators &g, g and f3, corresponding
to the negative lowest root vy of B,

Ty = —2)\.2 =-T — 21"2 (6)
such that they satisfy the quantum algebraic relations (5) with £, j =0, 1, and 2, where
ko = k7ks? o =2 apr =a1n =0 apy = —1 azo=—2. (5"

In the following we are going to show that for the adjoint representation of U, B, those
quantum representation matrices satisfying (5) do not exist.

Through a standard method [1] we draw the block weight diagrams for the
representations (10) and (02) in figure 1.

[oz]4
o2 107

(12 ]! ST 22]°
(600 0oL (@0
17! SEY 5,2 |2

Figure 1. Block weight diagrams for (a) the minimal and (b) the adjoint representations of
algebra U, B2

In order to simplify the notation we enumerate the states in those two representations
as shown near the blocks in figure 1 In terms of the enumerations for the states and the
matrix bases Egp

(Eab)ea = Sacpa )

we obtain the quanfum representation matrices for two representations as follows. For
the minimal representauon {10) we have

Dy(e1) = Dg(f1) = Ea1 + Ex3
Dy(e2) = Dy(fo) = [21"2 (Ero + Eq7) ®
Dy(ky) = qE22+ g7 E1q + Ego +4E-ﬁ +47" B33

Dy(k) = Eaz+qE11 + Ego+ g~ By + E33
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and for the adjoint representation (02) we have

. 61 \ /2
Dy(e1) = Dg(f1) = E31 + Ezo + ([3[]%) (Eao + Ey3) + Eg3 + Ei3

Dy(e2) = Dy(f2) = [21'% (Ess + Esa + Evo + Eo1 + Es3 + Exs)

Dy(kt) = Ess+gEs3 +q°Esz + 97 En1 + Eoo + Eyo +qEi7
+9E33+q B3z + Eij

Dy(ks) = gEas + Es3 + g 'Eoz 4+ qE11 + Ego+ Evy + 47 Esy
+qE3; + Ess+q™ Exg

where the tilde denotes transpose, and, as usual, [#] denotes

g —q ™"

[m]= —
g—gq~"

()

(10)

Owing to (6), the possible forms of the representation matrices of ¢p and fp, that

correspond to g, are as follows:

Dy{ep) ='a1Eos + @ Eys + 03E53 + asE3y + asEqp + agEqy

Dy{(fo) = b1Eqo + baEay + b3Esy + baEy5 + bsEgg + bsEy 3 .

From the quantum algebraic relations

[Dgle0), Dg(fi)1 =0 - [Dg(fo}, Dalej}] =0 j=12

we obtain

( [6] )”2 ( [6] )"2
= a=—|—— dg=a) =3 =a4 =ds

[3112] [31[2]
6 172 6 E/2
(@) === (gm) te=n=m=ben

It is easy to check that the quantum Serre relations are not satisfied:

Dy (e0)’ Dyes) — (141/12]) Dy (en) Dy(e2}Dy(e0) + Dylea) Dylea)

4113
=—{g'-4q) (M) a2 (B35 + Ezq) #£0

(61
Dy (fo)* Dy(f2) — (141/12]) Dy(fo) Dy (f2) Dy (fo) + Dy( £2) Dg(fo)?
=~ - 0 () ot (B + 1) 0.

an

(12)

(13)

(14)

The commutator of D,{ep) and D,(fy) does not satisfy the quantum algebraic relations
(5), either. Therefore, the representation matrix D, (eg) does not exist for the adjoint

representation of U, Bs.
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3. Solutions for the minimal representation

In the fusion formulae, the £29(x) matrix for the adjoint representation is expressed in terms
of the R ,(x) matrix for the minimal representation. In this section we compute the éq(x)
matrix for the minimal representation firstly. As a matter of fact, the ey matrix exists in
the minimal representation of I/, 85 so that the corresponding solution ﬁq (x) was computed
[3,1] by the standard method based on Jimbo’s theorem.

As usual, the co-product of the generators in two ireducible representations

AMM: gy = DMk ® D} (k)
A;mMz(ej) — Dé\'fl (e;)l ® Dfi(k;l) + Dém (kj) & Dém(ej)
AMME(f) = DY) ® D™ + DI (k) @ DY)

is a reducible representation of the quantum enveloping algebra, and can be reduced by the
quantum Clebsch—Gordan matrix

APRMDCM M)y = (€M) yDY (D) T=kj ¢ and f;.

The Clebsch~Gordan series for the direct product of two minimel representations is as
follows:

10)®10) =20 & (02)® (00). (15)

Pw denotes the project operator that is the product of two quantum Clebsch~Gordan matrices

(1]
Pn= (CG)N (éq)N : (16)

where the superscripts of the Clebsch—-Gordan matrix for the minimal representation are
omitted for simplicity. By making use of the standard method based on Jimbo’s theorem, .
we obtain the R} (x) matrix for the minimal representation as follows [3,1]:

R (x) = (1 — xg*)(1 = x¢%YPao + (& — g1 — x4%YPoy + & — %) (x — ¢%Pooy (17)

where a prime is added on R {x) in order to distinguish it from the additional solution R (x)
given in (18). In the form of &’ ¢ (x), it cannot be proportional to the projector operator P(o 2)
that maps the direct product space onto the space of the adjoint representation. In the same
paper [3] Jimbo pointed out that there is another solution related to the algebra U, A(z)

namely

Ry(x) = (1 — xg"(1 +x¢' %P + (x — g1+ xg' ") P2 + (1 — xg%)(x + ') Ppq -
(18)

Now, we know [5,1] that because the Clebsch-Gordan series (15) contains only three
representations including an identity representation (00), we can obtain two independent
solutions of the Yang-Baxter equation given in (17) and (18} in terms of Yang-Baxterization.
The solution (18), called non-standard, has a good property,

Ryg™ = (g7 = gM (1 + Py (19)
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namely, ﬁq (g™*) is proportional to the project operator Py onto the adjoint representation

Ro(a™ (Vo ® Vao) = Vr - 20)

It is the key point for computing the solution related to the adjoint representatlon from
{18). Since the solution (18), as pointed out by Jimbo, is related to the algebra U, A4 » the
representation matrix of ep satisfying the quantum algebraic relation of U, Am may exist.
The author would like to thank the referee for reminding us about this point. We will
discuss this problem elsewhere.

Solution (18) is a 25 x 25 symmetric matrix on the direct product space V10 ® Vi oy-
The row (column) indices are denoted by mim,, where both m; and m; take the values
2,1,0,1, and 2, I':’q(x) has the following symmetries:

iéq(x)mlmz mamty = qu(x)mgm‘; mimy — éq(x)n'tz:ﬁ, Ry = _x2q14éq'l (x—l)Mzmj myms (21)

Eq(l)mlmz My = (1 - q4)(1 + qln)amlnxgam;n:q

where 0 = 0. .

“q (x) given in (18) satisfies the weight conservation condition, namely, K, (x) is a block
matrix with four 1 x 1, eight 2 x 2 and one 5 x 5 submatrices. Through straightforward
calculation we obtain the explicit form for Rq(x) QOwing to the symmetries (21) we only
need to list the results as follows:

{a) four 1 x 1 submatrices:

R"g(x)zzzz = R, = (L — xgH{1 +x¢'% (22a)
(b) eight 2 x 2 submatrices:

Ry(x)a121 = Ry(x)agao = Rg(x)gjar = RyG1o = (1 — gM)x(1 +x¢'%)

. . y . (225)
Ry(£)a112 = Ry(®)noe = Ry(x)aiiz = Rg(X)1001 = g*(1 — x)(1 + x¢'%)
(c) one 5 x 5 submatrix:
Ry =1 —gx {1 + 4% — x4* (1 - ¢%)}
Ry(ohgg = (1 — g2 {(1 + g% — g1 — ¢}
By(®oooo = g2 — )1 + 24" +x(1 — g1+ ¢'%
Ry(x)y5,5 = —x(1 — x)¢®°(1 — g%
(22¢)

Ry(X)p300 = x(1 — x)g"(1 — g*)
Ry(0)pn = —x(1 —x)g*1 — g%
Ry(thioo = —x(1 —0)g°(1 — g%

Ry(X)g33 = By 0)piy = ¢* (1 — x)(1 + x4%)
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4. Fusion formulae

The project operator R, (g~*) maps the direct product space Vijg & Vi gy of two minimal
rcprcsentauons onto the representation space Vy) of the adjoint representation. The solution
’ Rq (x} of the Yang—Baxter equation related to the adjoint representation of U, B; is applied
on the direct product space Vipa ® Vigy

Vo ® Voo = (ﬁq(q_4) ® R, (4—4)) (Voo ® Vaoy ® Vo @ Van) - (23)
According to the fusion formulae, ﬁ;dj {x) can be expressed as the following product [6,1]:
R¥ix) = (1@ Ry{xg*) ® 1)(R,(x) ® K, (x))(1® Ry (xg ™) ©1). (24)

Now, we are going to sketch the proof. First of all, we show that R’;"" (x) given in (24)
is a matrix on the space (23). From the Yang-Baxter equation satisfied by R,(x):

(1® B, (B, @ V(1 @ B, () = (R, @ D(1® R, x:3) (R, (x) @ 1) 25)
we have

jé;dj(x)(v(uz) ® Vo) - (1® -éq (xgH ® Hiele ,éq(x))
x (R(0) ®101)(1® R, (x¢g H @ (R (g™ e1®1)
x (1918 R (g™ Vuo ® Van ® Vao ® Vao}
= (18 R,0gH @ 1)(101® ()18 R(g™ ®1)
x (R(xg™H @10 1)(18 R,(x) ®1)(1®1® R,(g™*)
x (Voo ® Viioy ® Vo ® Vo) (
= (1918 K(g™)(18 B, (x) @ 1)(RyixgH @181)
x (1©1® R(x¢") (10 R,(0) @ (191 R,(g™)
"% (Vao ® Vuo ® Vug @ Vo)
= (1910 R g™ H){1® R, (x) @1)(R,xg 818 1)
x (1@ R g H o D)(1018 £, ()1 K, (x¢*) ®1)
x (Voo ® Vaoy @ Vao ® Vag)
=(1018® R (g™ (R (e 0 181)(18 R(xgH ®1)
x (B () ®121)(1018 B,m))(1® K, (x¢") @ 1)
x (Vo) ® Vaoy @ Vaoy ® Vaaoy) _
CC (Ry@™ @ RByla™H) Vo ® Vo ® Vao ® Vao)
= Vg ® Voz - -
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By making use of (25) successively, it is straightforward to prove that I'é;dj(x) satisfies
the Yang-Baxter equation, that is an equation on the direct product space V(?g):

(181818 R(xg) @119 1® R,(x) ® B, (x)}(191®1® R,(xg™* ® 1)
x (1® R, (xyg) 19 1@ 1)(R,(xy) @ R;(xy) @ 1@ 1)
x (10 R,(iyg™®10101)(101018 K, (y¢") ® 1)
x(19191® K, ®R,(M(191818 R, (yg™ ®1)
=(1®R(gY 01018 )(R,0N®R,(e11)
x (1@ R (ygHe10101)(1091818 R, (xyg") 8 1)
x (1818 R (x) @ R, y))(1@10 18 R(xyg™H 9 1)
x (18 Ry(xg)®18181)(R,x) ® Ry(x) ®1®1)
x (18 R,(xgH®19101). (26)

5. Explicit form of the solution for the adjoint representation

The Clebsch—Gordan series for the direct product of two adjoint representations of B; is
02)®02)=0H(12)0 2002 (103 (00). (27)

Both the solution ﬁ;‘i 1 of the simple Yang-Baxter equation and the solution é;ﬁ i {x) of the

Yang-Baxter equation, related to the adjoint representation of U, Bs, can be expanded by
the project operators as follows:

R = Posy — ¢*Puz + 4°Peo — 4! *Pos + 4" *Paoy + 4" *Pooy (28)
R(x) = Apay(x, 9)Poa + Aan(x, 9Pu + Acy (s, 9)Peo

+ A (X, @YPo2 + Aany(x, OPao + Awpe, §)Poo (29)
<ot Hadi
RS©) = R 30

where, as usual, the project operators are the product of two quantum Clebsch-Gordan
mattices

Pr= (200, G0,y o
Now, we are going to compute the coefficients Axn(x, g)

R¥(x)|N, N) = An(x,g)|N, N). (32)
In the computation, we need the quantum Clebsch—Gordan coefficients to combine the states

|1, ma, m3, ma} = |mi1)imz}lms)|ms) in the space Vg @ Voo ® Voo @ Vo into the
state [N, N
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Firstly, through the standard calculation, we obtain the quantum Clebsch-Gordan
coefficients for the adjoint representation of U/, B;. Denote by |(02), m) the states in the
adjoint representation, and by {mimz) = |mi}|mz) the states in the space Vo ® Voo,
where the states is described by the enumerations given in figure 1. Owing to the symmetry
of the quantum Clebsch—Gordan coefficients

|(O 2)! m) = Z (Cq)mlm:(uz)m !mlm:l)_

e (33)
(C‘?)mlmz(ﬂ'}.)m =~ (Cq“‘)m;ml(oz)m == (C‘I'l)n'qrﬁz(OZ)rﬁ
we only need to list the following Clebsch—Gordan coefficients:
102), 4) = (214D {g71121) — q[12}}
102), 3) = 12172 £,1(02), 4) = ([2)/14D* {g7"|20) — 4]02}}
1(02), 2) = [21"2£](02), 3) = (/4D {g 7' 21) — g1 )}
102), 1) = £11(02), 3} = ([21/14D"* {g~1110) — gl0 1)} "

102), 0) = 2I™V2£1(02), 1) = ([21/BDV* 111) + (@~ — g)I00} — [T 1))
1(02), 0') = ([3112]/161)/2 { £11(02),2) — [(02), 0)} '
= [21(B1/1614D > {122) + (¢ 7> — DT T)
—(g7 - @00+ (1 — gD 1) — 22} .

From (34} we are able to compute the expansive expressmns for the highest weight
states in the Clebsch—-Gordan series (27):

1(04), (04)) = [(02),4)|(02), 4)
= ((2)/14]) {g7*12121) — 2112} — J1221) + g%|1212)} (35a)
(12), (12)) = ([2)/[4D 2 {g7"1(02), 4)1(02), 3) — q1(02), 3)|(02), 4)}
= ([21/14D¥* {g™%2120) — g~} [2102) — ¢~ [1220)
+gl1202) — g7'[2021) + |0221) +¢|2012) — ¢°|0212}} (35b)

where we see that the second-half terms of (354) and (356} can be obtained from the
first-half terms by exchanging ’

F(@)lmimamsmy} ~—> ==F(g™")|mamamam, ) (36)

where the plus sign stands for (35a), and the minus sign for (355). In the following we will
use the abbreviated notation (S terms) (for (36) with plus sign) or (A terms) (minus sign)
to replace the second-half terms, respectively. In this way (35¢) and (35b) are rewritten as
follows:

[(04), (04)} = (121/[4]) {g?[2121) — §|2112} — }]1221) + (S terms)}
1(12), (12)) = ([21/14D** {¢7>(2120) — g71|2102) ~ ¢~"(1220) + ¢]1202) +(A terms)} .
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In the same way we have

120), 20)) = (B2 {g 71|10 2), 4)1(02), 2) ~ 1(02), 3}(02), 3) + g1(02), 2)1(02), 4}}

= (21/14D 3172 {g~%12121) — ¢7*|2112) — g7"[1221)
+g|1212) — 47%|2020) + £{2002) +110220) + (S terms)}
[(02), (02)) = [317" ((6}[51121/[10][4D"? {g~1(02), 4)[(0 2), 0)
- g3 ([3112)/161)'/*|(02), 4)(02), 0) — ¢71}(02),3}](02), 1)
+gl(02), 1)1(02), 3) + ¢° ([31[21/[61)/2 1(02), 0')|(0 2), 4)
—g°1(02), 0)(02), 4}
= ([21*/14]) ([5)[2)/[10][6}[4])"/? {—g~*|2122) + g ~2|2111)
— g 82111 + g% 12132) + g~21223) — [121T)
+g7*1211) — 721222 + (g7" — g) ([41/12]) (g~*12100)
—g™%11200)) + ([61/[31i2]) (—g*12010) + g~ |2001)
+¢71|0210) — g10201)) + (A terms)}
[€10), (10)) = (4)/I8113DY2 {g1(02), 4)1(02), 1) — g7%1(02), 3}|(02), 0)
+¢71(02), 21(02), 1) +q1(02), 1){(02), 2)
—g1(02), 0)|(02), 3) + ¢°((02), 1)[(02), 4)}
= 2] ((8}[4113])~"/? {g~°|2101) — g~>}2110} — g —*}1201}
+g7"(1210) — g3(2011) — (g% — ¢7%) 12000} + g 3|2011)
+¢10211) + (g7% — 1)[0200) — g~"|0211} + g 7°|2110)
—g7!|2101) - g 71210} + ¢l1201}) + (S terms)}
[(00), (00)) = ((41/B8I5DY* {g*(02), 4102}, 4) — ¢7%((02), 3)1(02), 3}
+g721(02), 2)1(02), 2} + ¢71(02), 1}{(02), 1)
— 1(02), 0)1(02), 0) — |(02), 0'}|(02), 0)
+2)(02), )02, 1) + 4%1(02),2))(02), 2)
—-3°1(02), 3)1(02), 3} + ¢*((02), 4)((02), 4}
= [2} (B)[5)[4])/* {q 512112} — ¢~#[2121) ~ ¢™*1212)
+ 4741221y — g7512003) + 4732020} + ¢7310202)
—¢7110220) + g742113) — ¢ 7221 21) — ¢~41212)
+ [1221) + ¢3]1001) — g71]1010) — g~'10101)
+¢10170) + ([3)[21/2[6D) (—212222) — 2 (g™* — g% + ¢*) |1111)
4[1111) 4 [1117) + [2222) + |2222))
+(g7" — q) (|2200) + 10022) ~ g~"[2311) — ¢ 7[1122)
—42(1100) — g10011) - g{2211) — ¢{1122))
— (g™ ~ g)" (141/2(21) 10000} + (S terms)]

(35¢)

(35d)

(35¢)

G5f)



Adjoint representation of U, B, 2009

Now, subst:tutmg (22), (24) and (35) into (32), we obtain Ayn(x, q), and then, the

solution Rq J(Ju:) of the Yang-Baxter equation related to the adjoint representation of U/, B;
as follows:

R2(x) = (¢*—x)(1-2)(1+x¢" ) (A+xg™) {(1 ~ xg")(1 + x¢%) (1 — xg*)(1 + 2" )P4
+ (x — g*}(1 + xg%)(1 = xg*)(1 + x¢' ") Py
+ (1 — xg*)(x + ¢°)(1 — 24*)(1 + x¢' )P0
+ (x — ¢*)}x + g% ~ xg%) (1 + x4 Py
+(x — g A + 245 — g5 + 2¢'HPy g
+(1 — xg")(x + ¢®)(1 — xg"}x + ') Pooy } (37)

where the common factor (g* —x)(1—x)(1+x¢'%(1 +xg'*) can be removed. In principle,
this method can be generalized to the solutions of the Yang—Baxter equation related to the
adjoint representations of U7, By, U;Cy and U, D;.

6. Rational solution for the adjoint representation

Through a standard limit process [1] we obtain the corresponding rational solution R*(x/7)
for the adjoint representation of U, Bs:

R (u/m) = lim m
g1 (1 _qzu/n)
=4 {(l 4+ 2u/n){(1 +4u/n) (P(u4) + Pag + P(OO)) )
+ (1 — 2u/m)(1 +4u/n) (Pa2 + Poy) +(1 — 2u/m{1 — du/n)Puo} (38)
where P is the transposition operator, and )

Py =1limPxn.
g—1
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