
A new solution of the Yang-Baxter equation related to the adjoint representation of UqB2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 1999

(http://iopscience.iop.org/0305-4470/27/6/023)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 27 (1994) 1999-2009.. Printed in the UK 

A new solution of the Ymg-Baxter equation related to the 
adjoint representation of Uq& 

Zhong-Qi Mat and An-Ying Dait 
t CCAST World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China 
and 
Institute of High Energy Physics, PO Box 918(4), Beijing 100039, People's Republic of China 
3 Beijing Institute of Technology, Beijing 100081, People's Republic of China 

Received 20 July 1993 

Abshnct. A new solution of the Yang-Baxter equation, that is related to the adjoint 
represenmion of the quantum enveloping algebra Uq&, is obtained by fusion formulae from a 
nonstandard solution. 

1. Introduction 

There are three typical methods 111 for finding the trigonometric solutions of the Yang- 
Baxter equation [2]. The main one is based on Jimbo's theorem [3,4]. The necessary 
condition for using this method is the existence of the quantum generator eo, corresponding 
to the negative lowest root. The second method for finding solutions is the so-called Yang- 
Baxterization, namely to embed appropriately the spectral parameter x into a solution k,, of 
the simple Yang-Baxter equation such that k,,(x) satisfies the Yang-Baxter equation. This 
method is useful for the cases where the specmm-independent solution k,, has only two or 
three different eigenvalues [5,1]. The third method is the fusion formulae. [6,7,1] where an 
appropriate project operator is needed. 

Unfortunately, firstly, the explicit form of eo. satisfying the quantum algebraic relations, 
does not exist for the adjoint representation of any quantum enveloping algebra U&, except 
for U,Ae; however, for the quantum twisted loop algebra, as reminded by the referee, 
the eo matix may exist. Secondly, the spectrum-independent solution k,, for the adjoint 
representation usually has manx more than three different eigenvalues. For instance, in 
the simplest case, the solution R,, for the adjoint representation of U,,& has six different 
eigenvalues. Finally, from the solution & ( x )  related to the minimal representation, obtained 
based on Jimbo's theorem, the needed project operator for the fusion formulae does not exist 
for this case. This is the reason why no solution of the Yang-Baxter equation related to the 
adjoint representation of U&, except for U,,A<, has been found up to now. 

On the other hand, by Ymg-Baxterization, when i, has three different eigenvalues, 
there is an additional solution, a so-called non-standard one, that happens to provide the 
needed project operator for the fusion formulae. In this way we are able to compute 
the solution related to the adjoint representations of U,,'PBt: U& and U,Do. In order to 
realize this idea, in this paper we compute explicitly the simplest example of those cases: 
the trigonometric and rational solutions of the Yang-Baxter equation related to the adjoint 
representation of U,,&, that is equivalent to U&. The rest of the solutions can be computed 
straightforwardly, but more complicatedly. 
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This paper is organized as follows. In section 2, we show that the explicit form of the eo 
matrix for the adjoint representation of U&, that satisfies the quantum algebraic relations, 
does not exist. In order to use the fusion formulae, firstly we have to compute the solution 
% ( x )  of the Yang-Baxter equation related to the minimal representation in section 3. From 
this we obtain the project operator &,(q-4) that maps the direct product spaces V(10) 8 V(10, 
onto the representation space V.dj = V(OZ) of the adjoint representation, where V(10) are the 
representation spaces of the minimal representation (1 0). In section 4 we sketch the proof 
for the fusion formulae. The explicit form of ri,”’(x) is computed in section 5 in terms of 
the quantum Clehsch-Gordan coefficients for the co-product in the direct product of two 
representation spaces of the adjoint representation. The corresponding rational solution of 
the Yang-Baxter equation is obtained in section 6 by a standard limit process [l]. 

2. Non-existence of eo matrix 

The Cartan matrix for the algebra BZ is 

From this we have the relation between the simple roots rj and the fundamental dominant 
weight A j :  

~ I = W I - Z A Z  T Z = - A I + ~ A Z  Al=rl+rz h z = r l / 2 + r z .  (2) 

An irreducible representation of UqBz is denoted by its highest weight M = ( M I M z )  
and the states by m = (mlmz): 

M = MIAI + MzAz m = mlAl +m2A2. (3 ) 

The minimal representation is denoted by (1 0). and the adjoint representation by (0 2). The 
Casimir C z ( M )  is calculated by the following formula: 

C z ( M )  = Mf + M1M2 + M ; / 2 +  3M1+ 2 M z .  (4) 

The quantum algebraic relations for U& are as follows: 

91 = q: = q kikj = klki kiej = q,?lJejki k i f j  = q,~“’fiki  
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From Jimbo's theorem [3J, we hope to find the generators ko, eo and fo, corresponding 
to the negative lowest root ro of BZ 

rg = -2hz = -r1 - 2172 (6) 

such that they satisfy the quantum algebraic relations (5) with i, j = 0,1, and 2, where 

ko = kF1k$ 5 0 = 2  u o l = a l o = O  q 2 = - 1  4zo=-2.  (5') 

In the following we are going to show that for the adjoint representation of U4Bz those 
quantum representation matrices satisfying (5) do not exist. 

Through a standard method [l] we draw the block weight diagrams for the 
representations (1 0) and (02) in figure 1. 
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Figure 1. Blo 
algebra UqB2 

m021' 
weight diagrams for ( U )  the minim ?joint ?presentations of 

In order to simplify the notation we enumerate the states in those two representations 
as shown near the blocks in figure 1. In terms of the enumerations for the states and the 
matrix bases E& 

(&b)cd = & d b d  (7) 

we obtain the quantum representation matrices for two representations as follows. For 
the minimal representation (1 0) we have 



Owing to (6), the possible forms of the representation matrices of eo and fo, that 
correspond to TO, are as follows: 

Dq(eo) =~alE04 + U Z E W ~  + a3Ei3 + cyEjl + a5Eao + a6EaW 
(11) 

Dq(fo) = blE40 + bZb4V 

From the quantum algebraic relations 

f b 4 E i j  + b s E o i + b ~ E v a .  

[QJeo), &(fj)l= 0 ~ [Dq(fo),  D,(ej)l= 0 j = 1,2 (12) 

we obtain 

The commutator of D&O) and Dq(fo) does not satisfy the quantum algebraic relations 
(S), either. Therefore, the representation matrix Dq(eo) does not exist for the adjoint 
representation of U&. 
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3. Solutions for the minimal representation 

In the fusion formulae, the matrix for the adjoint representation is expressed in terms 
of the i q ( x )  matrix for the minimal representation. ~n this section we'compute the I?,(x) 
matrix for the minimal representation firstly. As a matter of fact, the eo matrix exists in 
the minimal representation of U9& so that the corresponding solution kq(x) was computed 
[3,11 by the standard method based on Jimbo's theorem. 

2003 

As usual, the co-product of the generators in two irreducible representations 

AMIMz 4 

*MiMz(,. J )  - - D M I  (ejj  @ D,M'(k;') + D,"l(kj) @ D,M'(ej) 

A W M Z ( $ )  j - - D M I  (fi)@ D,M'(k;l)+D?(kj)@D?(fi) 

is a reducible representation of the quantum enveloping algebra, and can be reduced by the 
quantum Clebsch-Gordan matrix 

(kj) = D,"l (k j )  @ D,M' (kj) 

The Clebsch-Gordan series for the direct product of two minimal representations is as 
follows: 

(1 0) .@ (1 0) = (20) 63 (02) 63 (00). (1.5) 

PN denotes the project operator that is the product of two quantum Clebsch-Gordan matrices 
Dl 

where the superscripts of the Clebsch-Gordan matrix for he minimal representation are 
omitted for simplicity. By making use of the standard method based on Jimbo's theorem, 
we obtain the & ( x )  matrix for the minimal representation as follows [3,1]: 

li;o = (1 - xq4)(1 - x q 6 ) ~ n o ,  + (x  - q4)(1 - x q 6 m O 2 )  + (x  - q4)(x - q 6 ~ ~ ( o o ,  (17) 

where a prime is added on in order to distinguish it from the additional solution k q ( x )  
given in (18). In the form of $,(x), it cannot be proportional to the projector operator P(02) 
that maps the direct product space onto the space of the adjoint representation. In the same 
paper [3] Jimbo pointed out that there is another solution related to the algebra U,AY), 
namely 

iq(.) = (1 -xqw + x q l o ) ~ ~ 2 0 ,  + ( x  -q4)(1 +xq10)P(02, + U  - x q 4 ) ( x  + q l ~ ) ~ ( ~ , , .  
(18) , 

Now, we know [5,1] that because the Clebsch-Gordan series (15) contains~only three 
representations including an identity representation (00), we can obtain two independent 
solutions of the Ymg-Baxter equation given in (17) and (18) in terms of Yang-BaxNrization. 
The solution (18), called non-standard, has a good property, 

(19) k9(q-4) = (q-4 - q4)(1 + @ ) P ( ~ ~ ,  
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namely, kq(q-4) is proportional to the project operator P(oz) onto the adjoint representation 

(20) 

It is the key point for computing the solution related to the adjoint representation from 
(18). Since the solution (18), as pointed out by J i b o ,  is related to the algebra UgA,", the 
representation matrix of eo satisfying the quantum algebraic relation of UqAiz) may exist. 
The author would l i e  to thank the referee for reminding us about this point. We will 
discuss this problem elsewhere. 

Solution (18) is a 25 x 25 symmetric matrix on the direct product space Flo) 8 Vcl~,. 
The row (column) indices are denoted by mlmz, where both ml and mz take the values 
2, 1, 0, i, and 5. i g ( x )  has the following symmetries: 

Zhong-Qi Ma and An-vng Dai 

i q ( q 4 ~ ( ~ ( 1 0 )  8 ~ ( ~ 0 ) )  = ~ ( 0 2 ) .  

Z 14" 
i q ( x ) m , m z  m3mh = i g ( x ) m , m ,  mxml = i q ( x h + r ,  i w i 3  = --x Rq-l(X-')mzml mrml  

(21) 
jip(l)mpl m3ml=  (1 -q4)(1 + q l " ) L , m a L n ,  

where 6 = 0. 
& ( x )  given in (18) satisfies the weight conservation condition, namely, & ( x )  is ablock 

matrix with four 1 x 1, eight 2 x 2 and one 5 x 5 submatrices. Through straightforward 
calculation we obtain the explicit form for kg(x) .  Owing to the symmetries (21) we only 
need to list the results as follows: 

(a) four 1 x 1 submatrices: 

iq(x)22zz = t i , ( X ) l l l l  = (1 -xq% + x q l 0 )  

i q (x ) z l z l  = $ ( ~ ) z o u ,  = iq(x)zizi = iq (x) lo lo  = (1 -q4)x(1 + x q l O )  

iq(~)z1lz = R ~ ( x ) z o ~  = i q ( x ) z i i z  = Rq(x)lool = q2(1 - X)(I + X q ' O )  

(27-a) 

(b) eight 2 x 2 submatrices: 

(22b) 
. 

(c) one 5 x 5 submatrix: 

iqwee = (1 -q4)x{(i +q4)-xq4(1 - q  6 

iq(x)ii ii = (1 - q4)x [ (1 + 4') -xq8(1  - 2)) 
iq(x)oooo = q z ( i  -x)( i+xqlO)+x(i  -q4)(1+q10) 





5. Explicit form of the solution for the adjoint representation 

The Clebsch-Gordan series for the duect product of two adjoint representations of BZ is 

(02)8(02)= (04)~(12)0(20)~(02)0(10)0(00). (27) 

Both the solution k:' of the simple Yang-Baxter equation and the solution of the 
Yang-Baxter equation, related to the adjoint representation of U,&, can be expanded by 
the project operators as follows: 

kidi = P(04) - q4?(1 2) + q6P(,o) - q 'OP(0Z) + q1*P(l0) + q16P(oo) 

v(x) = A(O&, q)P(o4) + A(iz)(x,q)P(iz) + A(ZO)(x,4)PPO) 

(29) 

V(o) = p d j  V '  (30) 

where, as usual, the project operators are the product of two quantum Clebsch-Gordan 
matrices 

(28) 

+ A(oz)(x, q)P(oz) + A(io)(x,q)P(io) + 4oo)(x, q)Poo) 

Now, we are going to compute the coefficients AN(x,  q)  

k$x)IN,N) = A N ( x , ~ ) I N , N ) .  (32) 

In the computation, we need the quantum Clebsch-Gordan coefficients to combine the states 
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Firstly, through the standard calculation, we obtain the quantum Clebsch-Gordan 
coefficients for the adjoint representation of UqBz. Denote by l(O2), m) the states in the 
adjoint representation, and by Im~mz) 1m1)lmz) the states in the space V(IO) 8 V(lo), 
where the states is described by the enumerations given in figure 1. Owing to the symmetry 
of the quantum Clebsch-Gordan coefficients 

(Cq)mm2(OZ)m - - - ( G - l ) m z m l ( O Z ) m  1 - - (C&im(OZ)fi 

we only need to list the following Clebsch-Gordan coefficients: 

I@ 2). 4) = ([21/[41)'/~ ( 4 - l ~  1) - 41 1 2)) 

l(02.1, 3) = [21-'/Zfz1(02),4) = (r2l/r41)'/2 (4-1120) - 4102)) 

1(02),2) = r21-'/~f~1(02), 3) = ( [ZI / [~ I )~ '~  {4-'12i) -4ii2)} 

1(02), 1) =f1i(o2),3) = ([21/[41)'/~{q-'iio) -qioi)J  

1(02),0) = r~1-~ '~ f~ i (02 ) ,  1) = ([21/[41)'/~[1ii)+'(q-~ -4)ioo) - iii)] 
(34) 

0') = ([~1[21/[~1)'~2 [fil(02), 2) - l(Oz), 0)) 

= r21 ([31/[61r41)'/~ (122) + (P- 1)ii i) 

-(q-' - 4)ioo) + (I - q2)ii I )  - 122)] . 
From (34) we are able to compute the expansive expressions for the highest weight 

states in the Clebsch-Gordan series (27): 

W4), (04)) = I(02),4)1(02),4) 
= ([2]/[4]) {q-212121) - 12112) - 11221) +4211212)} (35a) 

~(iz) .  (12)) = ( r z i / r41 )~~~  (q-1~(02). 4)1(02), 3) - m 2 ) .  3)1(02), 4)} 

= ([21/[41)~/~ {q-312120) - q-112102) - q-111220) 

+41202) -q-'12021) +q10221) +q12012) -q310212)J (35b) 

where we see that the second-half terms of (352) and (3%) can be obtained from the 
first-half terms by exchanging 

F ( q )  Im I mzm3m4) - F(4-I I m 4 m m m  I )  (36) 

where the plus sign stands for (35a), and the minus sign for (3%). In the following we will 
use the abbreviated notation (S terms) (for (36) with plus sign) or ( A  terms) (minus sign) 
to replace the second-half terms, respectively. In this way (352) and (3%) are rewritten as 
follows: 

1(04), (04)) = ([21/[4]) {q-212121) - 112112) - 111221) + (S terms)] 

I(12), (12)) = ([2]/[4])3/z{q-312120) -q-'12102) -q-'11220)+q11202) +(A terms)} . 
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Now, substituting (221, (24) and (35) into (32), we obtain Aj+, q), and then, the 
solution ii,"'(z) of the Yang-Baxter equation related to the adjoint representation of Uq& 
as follows: 

where the common factor (q4-x)(1-x)(1 + ~ q ' ~ ) ( l + x q ' ~ )  can be removed. In principle, 
this method can be generalized to the solutions of the Yang-Baxter equation related to the 
adjoint representations of LTqBt, U& and U,&. 

6. Rational solution for the adjoint representation 

Through a standard limit process [ 11 we obtain the corresponding rational solution R @ ( u / s )  
for the adjoint representation of U, Bz: 

where P is the transposition operator, and 
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